

Why the Southeast?

The Southeast is an ideal region to apply lessons learned from prior studies of connected water heaters.

- High penetration of residential electric water heaters
- High potential for energy savings through heat pump water heater (HPWH) market uptake
- Some utility demand response programs are available

Annual Source Energy Savings: HPWH vs. Electric WH in Unconditioned Space
Source: NREL Highlights: NREL Develops Heat Pump Water Heater Simulation Model, Kate Hudon 2012.
Based on research performed by Jeff Maguire.

Project Motivation and Contributors

- 2017-2018: BPA, PGE, NEEA, and PNNL collaborated on a large-scale, connected HPWH study
- 2020-2022: PNNL partnered with the Florida Solar Energy Center on a Florida field study and lab testing of connected HPWHs

This study builds on prior work but focuses on low-income and hard-to-reach participants in high potential North Carolina.

Key Contributors

U.S. Department of Energy Pacific Northwest National Lab (PNNL) North Carolina Justice Center Preserving Home

Project Funding and Contributors

- Project idea originated in conversations between Chris Granda, now at Energy Solutions, and Al Ripley, formerly with North Carolina Justice Center
- Funded by the Department of Energy with in-kind services and EcoPort communication modules provided by Pacific Northwest National Laboratory
- Preserving Home (previously Rebuilding Together of the Triangle) installed the HPWHs in eligible homes using state administered COVID recovery funding, providing a pool of potential participants. They also helped with last minute install needs.

About Energy Solutions

Our Mission: Create large-scale energy and environmental impacts by leveraging market-based solutions.

- For 25 years, our pioneering, market-driven solutions have delivered reliable, large-scale and cost-effective savings to our utility, government, and private sector clients across North America.
- We are a mission-led, employee-owned clean energy implementation firm whose team of smart, passionate people are committed to excellence and to building longlasting, trusted relationships with our clients.

Project Goals

- Save energy and money: Document energy savings and opportunities for water heater load shifting to reduce energy costs for low-income customers
- Shift load without compromising comfort: Document operation of connected, load shifting HPWHs for the Southeast U.S. climate and for participant load profiles
- Best practices for outreach: Share lessons learned for implementing HPWH load shifting programs in low-income communities or with hard-to-reach customers

Key Project Facts

24 installations of 240-volt HPWHs with EcoPorts

Control via e-Radio cellular modules and CTA-2045 messages

\$200 payment for study participation after completing surveys.

Installations in single family, low-income homes in North Carolina

1 year of control and monitoring

No mixing valves or changes to participant water heating mode

Participant Homes and Equipment

Home Ages	Between 1930 and 2010; most 1970s-era
Home Sizes	Range: 640 to 2,535 sq. ft.Average: 1,300 sq. ft.
Water Heater Location	 11 in conditioned spaces 9 in semi-conditioned space inside envelope 4 in unconditioned space outside envelope
Prior Water Heater	12 gas WHs9 electric resistance WHs, 3 not reported
HPWH Size	23 50-gallon tanks1 80-gallon tank
HPWH Install Date	Between May 2021 and May 2023

Study Participants

- All low-income; about 80% are below 50% area median income
- Most participant homes are comprised of seniors and adults. Five homes also have children or teens.
- 1 to 6 people per home, most commonly 1-2 occupants per home
- Household occupancy changes common due to change in number of residents staying in home, health issues, etc.

Occupants	Number of Households
1	13
2	7
3	2
5	1
6	1

Occupant Category	Number of Households
Children (0-12 y.o.)	4
Teens (13-18 y.o.)	3
Adults (19-64 y.o.)	11
Seniors (65+ y.o.)	13

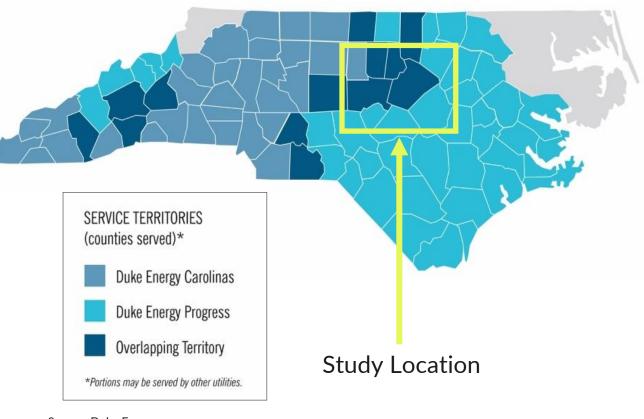
Participant Recruiting Highlights

Highlights

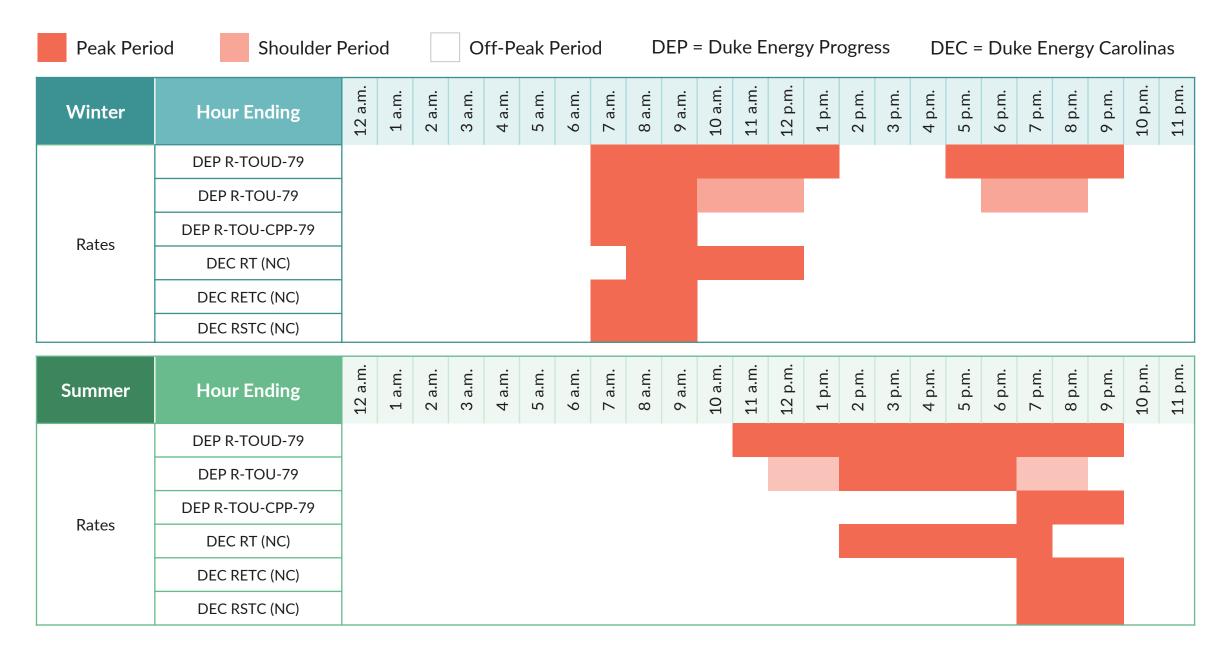
- Participants trust Preserving Home, so referral was successful
- Many participants had noticeable bill savings due to switch to HPWH

Challenges

- Some participants do not have email or Wi-Fi
- Some participants are unable to physically reach or see the HPWH user interface or communications module to troubleshoot
- Many participants did not trust online interactions; many were unwilling or unable to connect to manufacturer cloud



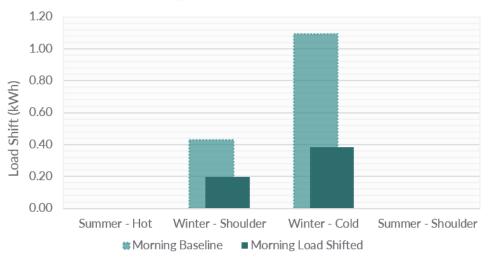
Utility Territories

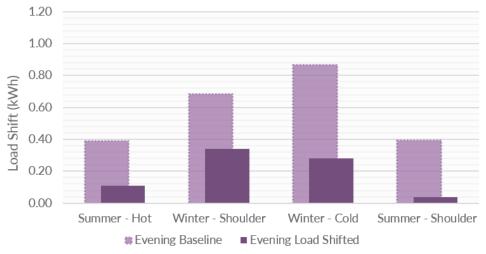

Utility	Number of Households	Time of Use (TOU) Rate Available (at Time of Study Design)
Duke Energy Carolinas	7	YES
Duke Energy Progress	8	YES
Piedmont Electric Co-op	1	YES
Town of Apex	5	YES
Not Specified	3	N/A

Source: Duke Energy

Duke Energy Time-of-Use Rate Periods (Early 2023)

Seasonal Load Shifting Strategies

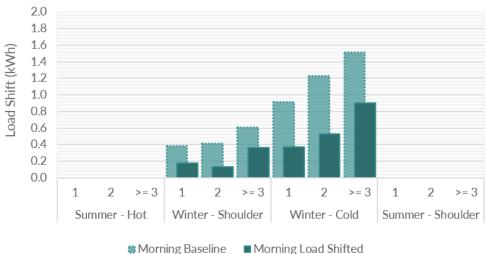

Winter	Months	12 a.m.	1 a.m.	2 a.m.	3 a.m.	4 a.m.	5 a.m.	6 a.m.	7 a.m.	8 a.m.	9 a.m.	10 a.m.	11 a.m.	12 p.m.	1 p.m.	2 p.m.	3 p.m.	4 p.m.	5 p.m.	6 p.m.	7 p.m.	8 p.m.	9 p.m.	10 p.m.	11 p.m.
Cold	December January February																								
Shoulder	October November March April																								
Summer	Months	12 a.m.	1 a.m.	2 a.m.	3 a.m.	4 a.m.	5 a.m.	6 a.m.	7 a.m.	8 a.m.	9 a.m.	10 a.m.	11 a.m.	12 p.m.	1 p.m.	2 p.m.	3 p.m.	4 p.m.	5 p.m.	6 p.m.	7 p.m.	8 p.m.	9 p.m.	10 p.m.	11 p.m.
Hot	June July August																								
Shoulder	May September																								
	Loa	d Up				Criti	cal P	eak			5	Shed				Nori	mal (Oper	atio	n					

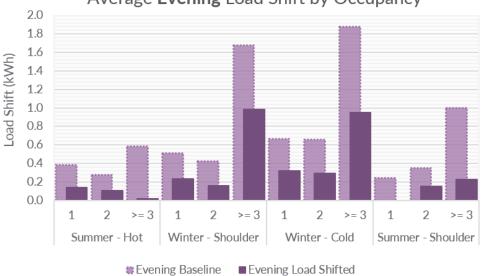

Results – Load Shifting by Season

Shifting Schedule	Shed Periods	Average Daily Energy Savings				
	Siled I cilous	kWh	% of non- shifting baseline			
Summer - Hot	Evening: 1 to 9 p.m.	0.10	4%			
Winter - Shoulder	Morning: 6 a.m. to 12 p.m. Evening: 4 to 9 p.m.	0.11	4%			
Winter - Cold	Morning: 6 a.m. to 1 p.m. Evening: 4 to 9 p.m.	0.20	6%			
Summer – Shoulder	Evening: 1 to 9 p.m.	0.34	12%			

Average Morning Load Shift

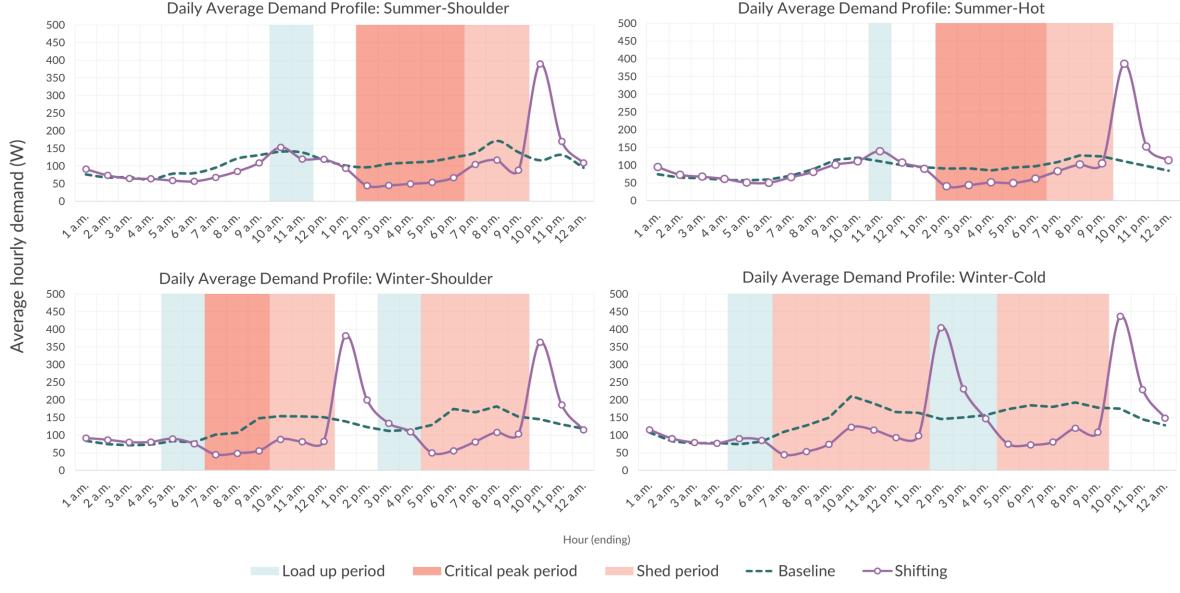
Average **Evening** Load Shift

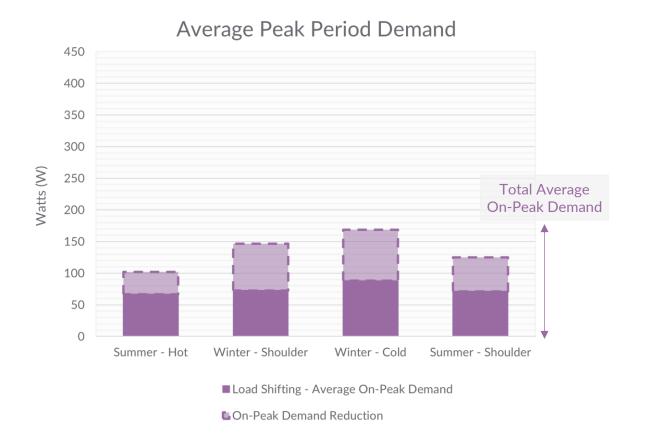



Results – Load Shifting by Occupancy

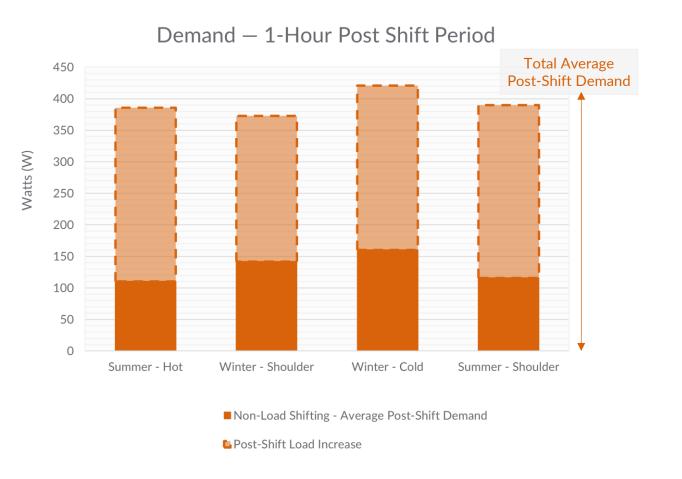
Shifting Schodulo	Ossumants	Count in	Average Daily Energy Savings			
Shifting Schedule	Occupants	Sample	kWh	% of non- shifting baseline		
Summer - Hot			0.09	3.8%		
Winter - Shoulder	1	14	0.02	0.8%		
Winter - Cold	1	14	0.03	1.1%		
Summer - Shoulder			0.24	9.2%		
Summer - Hot			0.03	1.5%		
Winter - Shoulder	2	6	-0.16	-6.5%		
Winter - Cold	2	0	0.09	2.7%		
Summer - Shoulder			0.19	7.7%		
Summer - Hot			0.26	9.7%		
Winter - Shoulder	3 or More	4	0.86	19.7%		
Winter - Cold	3 of More	4	0.98	18.6%		
Summer - Shoulder			0.93	23.6%		

Average Morning Load Shift by Occupancy





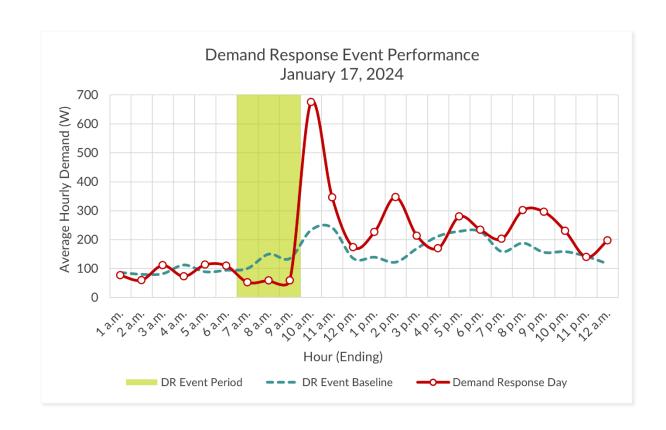
Results - Customer Demand Profiles by Season


Results - On-Peak Demand and Electric Resistance Element Usage

Shifting Schedule	Hours of Load Shift	% of shift wi with electric r	
Jilitilig Jelleudie	Per Day	Non-Load Shifting Baseline	Load Shifting
Summer - Hot	8	2.4%	1.7%
Winter - Shoulder	11	4.0%	1.6%
Winter - Cold	12	5.3%	2.1%
Summer - Shoulder	8	4.3%	1.7%

Results - Recovery Demand and Electric Resistance Element Usage

	% of post-shift window hours with electric resistance use						
Shifting Schedule	Non-Load Shifting Baseline	Load Shifting					
Summer - Hot	3.4%	11.1%					
Winter - Shoulder	4.1%	14.0%					
Winter - Cold	4.3%	11.7%					
Summer - Shoulder	4.3%	11.7%					



Results - Electric Resistance Element Usage by Participant

		Summer - Hot		Summer -	Shoulder	Winter	- Cold	Winter - Shoulder		
			Perc	entage of Shift W	/indow Hours v	vith Electric Resist	ance Element U	Jsage		
Participant	Occupants at start of study	Non-load shifting	Load shifting	Non-load shifting	Load shifting	Non-load shifting	Load shifting	Non-load shifting	Load shifting	
13	6	31.3%	25.4%	45.0%	24.7%	31.3%	12.0%	31.5%	14.0%	
31	5	7.8%	4.9%	29.5%	5.5%	38.5%	12.5%	29.4%	6.0%	
29	1	21.9%	10.6%		13.8%	7.9%	0.4%	12.0%	5.1%	
15	1					18.7%	11.9%	1.0%	3.0%	
34	1		0.4%	10.7%		10.3%	0.3%	12.9%	0.1%	
32	1		0.9%	9.8%	2.7%			2.4%	2.1%	
25	2					4.4%	1.5%			
10	2	0.2%		0.5%	0.3%	3.2%	4.9%	1.7%	5.4%	
19	2	0.7%	0.4%		0.6%	2.4%	3.2%	3.1%	2.9%	
17	1	0.9%		1.6%	0.6%	4.4%	0.3%			
20	2	1.6%			0.3%	4.0%	0.8%	2.1%	0.2%	
24	3	2.0%						1.0%		
16	1	2.5%		1.0%		0.4%	0.2%	0.7%		
30	3					0.8%	0.6%			
23	1					0.4%	1.1%		0.2%	
28	1				0.6%	0.4%	0.6%	0.3%	0.3%	
18	1	0.6%					0.6%		0.1%	
26	1	0.2%				0.4%				
21	2				0.3%	0.4%	0.2%		0.2%	
14	2								0.1%	

Results - Winter Morning Peak Demand Response Event

Conducted test DR event from 6-9 a.m. on a cold winter day (20 °F) to simulate grid peak day load reduction

Water heaters minimized operation and avoided using compressors or electric resistance elements during the event.

Average load reduction was **72 W** per participant.

Controlled HPWHs can be a valuable grid asset and further contribute to annual peak load reduction, even for participants with low baseline energy use.

Regional Opportunities

- TOU rates used in study included 5+ hour peak periods, so load shifting periods were
 6-8 hours
- Long load shifts were possible because of low occupancy and water usage for most participants
- More recent Duke Energy TOU rates have new season months, shorter peak periods, and low-price discount periods
- The shorter peak periods could make load shifting easier, and customers can save more by shifting operation to discount periods

Duke Energy Carolinas Residential Time-of-Use Rate, 2025Source: Duke Energy, https://www.duke-energy.com/home/billing/time-of-use

Conclusions

- Controlled HPWHs can reduce water heating electricity costs for low-income households in the Southeast that have access to time-varying rates
- Demand responsive HPWH can reduce load during grid peak periods in the Southeast without customer intervention and without causing cold water incidents
- Seniors in low occupancy homes with low hot water usage may have greater flexibility to shift water heating times compared to other users
- Engaging low income and hard-to-reach households can be successful when the programs are designed to respond to their needs

Recommendations

Customers

Educate low-income customers on how to lower costs on TOU rates

Set expectations for customers switching to HPWH

Upsize units to ensure hot water availability for variable occupancy or multi-generational homes

Programs

Reach out via trusted channels

Recognize the value of hard-to reach customers

Account for unique demographic impacts – e.g., seniors with low hot water use

Provide non-Internet-based enrollment and support options

Don't require home Wi-Fi, email or apps

Rates

Load shifting-favorable TOU rates (e.g., targeted peak periods and low off-peak costs) incentivize better participation

Customers without flexible loads may not benefit from time-varying rates – explore using connected product data to apply TOU rates only to flexible loads

Manufacturers and Installers

Low-income customers with product issues need support for both equipment *and* labor costs for warranty claims and reinstallations

Carefully consider HPWH install location within home to avoid performance issues and customer dissatisfaction

