Who Pays and Who Benefits? How To Incorporate Equity in Utility Resource Planning

OUR MISSION

To optimize the use and impact of energy to enhance the quality of life in the Southeast.

OUR VISION

All people in the Southeast live and work in healthy and resilient buildings, utilize clean and affordable transportation, and thrive in a robust and equitable economy.

OUR VALUES

Take Initiative

We take responsibility for realizing a better quality of life in the Southeast.

Value Others

We seek, respect, and promote diverse perspectives.

Earn Trust

We pursue our work with benevolence, competence, and reliability.

Pursue Equitable Solutions

We recognize, acknowledge, and account for a history of prejudice and inequality in Southeastern communities.

Our Core Services

National Standard Practice Manual & Equity

Energy Insecurity in the Southeast

Will Bryan, Ph.D. Director of Research wbryan@seealliance.org

The Southeast has the lowest electric rates in the contiguous United States, but the highest residential bills.

Data and Map: Energy Information Administration (EIA). Chart: SEEA.

High energy bills disproportionately impact the region's lowincome households and people of color.

Affordability Data (LEAD) Tool. Chart: SEEA.

Annual Energy Cost (Gas)

One out of every three people in the South faces **ENERGY INSECURITY**, "an inability to adequately meet household basic energy needs" including heating, cooling, and lighting.

Energy insecurity is rooted in the past.

HOLC Map: University of Richmond; Data: U.S. Department of Energy, Low Income Energy Affordability Data (LEAD) Tool. Map: SEEA. Energy insecurity was common in the South, even before COVID-19.

The dark blue

section in these pie charts demonstrates the need among Southern households (millions of households.)

> South West Midwest Northeast

SEEA SOUTHEAST ENERGY EFFICIENCY ALLIANCE

Home at Unhealthy Temperature

Disconnected/Stop Service Notice

Reduce Food/Medicine

Unable To Use Heat/Cooling Equipment

Data: U.S. Energy Information Agency (EIA), Residential Energy Consumption Survey (RECS)

Data: EIA, Residential Energy Consumption Survey (RECS), 2020. Map: SEEA.

53% of homes in the Southeast were built before the earliest energy codes were developed.

Energy insecurity is not just an issue of incomes

Unaffordable Homes Are Unhealthy Homes

Energy insecure communities are vulnerable to extreme weather and other disaster events.

Housing is infrastructure

Rooftop solar decreases energy expenditures and emissions: improve resilience, affordability, climate, and health

Weatherization improves energy performance and reduces health hazards: improve resilience, affordability, climate, and health

outcomes

Expanding greenspace and decreasing impervious surfaces reduce air temperature and flooding: improve resilience, affordability, climate, and health outcomes

> EV access and charging provides backup power and reduces auto emissions: improve resilience, climate, and health outcomes

Stakeholder Recommendations for Reducing Energy Insecurity in the Southeast United States

Allie Garrett, Stacey Washington, and William D. Bryan

Energy Insecurity in the South

The South has low energy rates, but high energy bills. Explore how unaffordable bills affect lowincome households in the region.

Southeast Energy Efficiency Alliance (SEEA) & Texas Energy Poverty Research Institute (TEPRI) Dece

ENERGY EQUITY ACTION PLANNER Southern States

Rooting Energy Equity in the U.S. South Decision-Making Framework + Guide for Regional Stakeholders

Will Bryan, Southeast Energy Efficiency Alliance (SEEA) Jacquie Moss, Texas Energy Poverty Research Institute (TEPRI)

Get Started »

July 13, 2021 Version 1.0

Deliver affordable, reliable and increasingly clean energy to customers

Target smart investments to support one of the most impactful transitions in our history

Create short-term and long-term solutions

Î

20

Low Income Affordability Collaborative Members

SOUTHEAST ENERGY EFFICIENCY ALLIANCE

Low Income Affordability Collaborative Insights

Average Electricity Burden by Income and Arrearage Definition

Low Income Affordability Ecosystem

A Framework for Addressing Cost-Effectiveness and Distributional Equity

Southeast Energy Efficiency Alliance December 13, 2022

> Alice Napoleon Synapse Energy Economics

Today's Discussion

- Benefit-cost analysis (BCA)
- Distributional equity analysis (DEA)
- Conceptual DEA framework

About NESP

National Energy Screening Project (NESP): stakeholder organization that works to improve costeffectiveness screening practices for distributed energy resources (DERs).

NESP's main products to date

- National Standard Practice Manual for DERs
- Methods, Tools and Resources Handbook for Quantifying DER Impacts for Benefit-Cost Analysis (MTR handbook)
- Database of Screening Practices (DSP)

National Standard Practice Manual

For Benefit-Cost Analysis of Distributed Energy Resources

AUGUST 2020

Energy Equity

An equitable energy system is one where the economic, health, and social benefits of participation extend to all levels of society, regardless of ability, race, or socioeconomic status. *Achieving energy equity requires intentionally designing systems, technology, procedures, and policies that lead to the fair and just distribution of benefits in the energy system.*

PNNL 2021- https://www.pnnl.gov/projects/energy-equity

 Many structural/recognition metrics, like building community wealth, don't necessarily intersect with a regulatory process.

Adapted from ACEEE's Leading with Equity White Paper

Benefit-cost analysis (BCA)

- BCA is widely used to assess the cost-effectiveness of DER programs
- BCA compares the present value (PV) of a DER's benefits with the PV of its costs
- The DER is cost-effective if
 - The benefit-cost ratio ≥ 1.0
 - Benefit-cost ratio = PV benefits / PV costs
 - The net benefits are positive
 - Net benefits = PV benefits PV costs

BCA is not designed to evaluate equity impacts

- BCA does not directly address structural or procedural equity
- BCA is not designed to address distributional equity, because it measures impacts on average across the utility system
 - Costs typically recovered across all customers
 - Benefits typically a blend of avoided costs
- BCA cannot distinguish impacts on target populations
 - Exception: DER programs that are designed to serve only target populations (e.g., low-income programs)
- BCA focuses mostly on monetary results
 - Many equity metrics cannot be put into monetary terms
- BCA does not and should not account for rate, bill, or participation impacts
 - The Rate Impact Measure (RIM) Test combines BCA results with rate impact results
 - Obscures both rate impacts and BCA results
 - Instead, rate, bill, and participation impacts should be analyzed separately from BCAs
 - Traditional rate, bill, and participation analyses do not address target populations

BCA can address distributional equity only in limited ways

- BCA can analyze programs that are designed to serve only target populations (e.g., low-income DER programs)
 - However, the results show only whether the program benefits exceed the costs. They do not
 provide information on the other energy equity metrics
 - The results say nothing about how the *other* DER programs affect target populations
- Rate, bill, and participation analysis can be used alongside BCA to get one indicator of distributional equity
 - By comparing the rates and bills of program participants versus non-participants
 - However, this says nothing about the rate and bill impacts on target populations
 - This also says nothing about the other energy equity metrics

Target populations – Massachusetts example

Environmental justice neighborhoods defined by the following

- · Median income,
- Minority population,
- English proficiency, or
- Combination of minority population and income

Source: Massachusetts Executive Office of Energy and Environmental Affairs

Distributional equity metrics

- There are many initiatives and studies that describe energy equity metrics
 - One recent example: <u>The Energy Equity Project Report 2022</u>
- For DEAs, distributional metrics are needed
- Example distributional equity metrics include
 - Impacts on rates, impacts on bills, participation in DER programs
 - Energy burden, reliability, resilience, public health, etc.
- These metrics should be applied separately to the target population and other customers
- These metrics should be determined by each state, based on the state's distributional energy equity goals.

Comprehensive Decision-Making Framework for DER Investments =

BCA and DEA comparison

	Benefit Cost Analyses (BCA)	Distributional Equity Analyses (DEA)		
Purpose	To identify which DER programs utilities should invest in or support	To identify how DER programs impact target populations relative to other customers		
Questions Answered	What are the costs and benefits of a DER program across all customers?	How will DER impacts accrue to target populations compared to other customers?		
Impacts Analyzed	 Utility system impacts Participant impacts Societal impacts 	 Participant and societal impacts Rate, bill, and participation impacts Distributional equity metrics 		
Example Metrics	 Costs (PV\$) Benefits (PV\$) NPV BCR 	 Disaggregated for target populations and other customers: Rates (\$/kWh) Bills (\$/month) Participation rates (% of eligible) Energy burden (% of income on energy bills) Additional metrics of health (ER visits), environmental impacts (PM 2.5), economic development (# of jobs), etc. 		
Scope	A single BCA to assess absolute DER program impacts	One analysis for target population and another for other customers to compare impacts across groups		

Conceptual steps to conduct DEA

- 1. Define the target population
- 2. Identify distributional equity metrics
- 3. Map equity metric data to the target population
- 4. Analyze the equity metrics to determine program impact on the target population relative to other customers
- 5. Present results of the BCA and the DEA together
- 6. Use DEA results to inform final decision on whether and how to proceed with the DER being considered

DEA results - example

Analysis	Impact of Energy Efficiency Portfolio	Results			
Benefit Cost Analysis (BCA)		All Customers on Average			
	Cumulative Costs (million PV\$)	200			
	Cumulative Benefits (million PV\$)	300			
	Cumulative Net Benefits (million PV\$)	100		Portfolio effective	
	Benefit-Cost Ratio	1.5		custome	
Distributional Equity Analysis (DEA)		Target Population	Other Customers	But targe underser	
	Participation (% of eligible population)	11	22		
	Rates (% change)	1.4	1.4		
	Participant Bills (% change)	-5.6	-1.5	Those cu are serve reduced burdens	
	Participant Energy Burden (% change)	-5.6	-1.5		
	Non-Participant Bills (% change)	1.4	1.4		
	Non-Participant Energy Burden (% change)	1.4	1.4		
	Criteria Air Pollution Emissions (% change)	-2	-9	 Target po experience 	
	Asthma Emergency Room Visits (% change)	-4	-6		
	Reliability (% change in SAIFI)	-3	-7	societal l	

Portfolio is costeffective for all customers on average

But target population is underserved

Those customers that are served see reduced energy burdens

Target population experiences fewer societal benefits

DEA challenges

- No standardized DEA methods
 - Academic and federal examples appear limited
 - There are few, if any, examples in the context of the utility industry
- Data access and availability
 - DEA analyzes highly specific target populations
 - Data requirements depend on definition of target population
 - Some data may not map directly onto the target populations
 - · Census tracts and blocks may not align with utility circuits and customer accounts
 - Utilities may not have sufficient data for some distributional equity metrics
 - Utilities may be reluctant to provide customer data for customer privacy reasons
- Using DEA results in decision-making
 - BCA relies mostly upon monetary results, while many DEA metrics cannot be monetized
 - DEA and BCA can provide conflicting results, which might require policy / judgment calls

New project to develop DEA guidance

- NESP and Lawrence Berkeley National Laboratory (LBNL) are partnering to develop a DEA Guidance Document in 2023
 - Project jointly funded by US DOE and E4TheFuture
 - Project team includes LBNL, E4TheFuture, Synapse Energy Economics
 - Will build on conceptual DEA framework described in the MTR Handbook, which was developed by Synapse Energy Economics
- New project will
 - · Focus on BCAs and decision-making for utility investments
 - Research current state of equity metrics and measurement
 - Develop a how-to guide for stakeholders to conduct DEA, applicable to any jurisdiction
 - Target audience includes a variety of practitioners including utilities, public utility commissions, state energy offices, utility consumer advocates, equity advocates, consultants, and more.
 - Build on existing equity initiatives and research
 - Present a real-world case study application of DEA
 - Be guided by an advisory group convened in November 2022

Contact Information

Alice Napoleon Principal Associate Synapse Energy Economics <u>ANapoleon@synapse-energy.com</u>

Check out <u>NESP Events</u> for NSPM and BCA webinars

Stay informed with the NESP Quarterly Newsletter

Questions?

Save the Date for Member Events

Southeast Regional Convening at AESP Conference

February 27, 2023 New Orleans, LA At AESP Annual Conference

SEEA Members-Only Meeting

June 22-23, 2023 Huntsville, AL Hosted by TVA and Huntsville Utilities

Thank you!

We want to hear from you. Please **share your feedback** about today's webinar.

Thank you to our partners and members who supported the creation of this presentation.

